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Recently, precision laser spectroscopy on 6He atoms determined accurately the isotope shift be-
tween 4He and 6He and, consequently, the charge radius of 6He. A similar experiment for 8He
is under way. We have performed large-scale ab initio calculations for 4,6,8He isotopes using high-
precision nucleon-nucleon (NN) interactions within the no-core shell model (NCSM) approach. With
the CD-Bonn 2000 NN potential we found point-proton root-mean-square (rms) radii of 4He and
6He 1.45(1) fm and 1.89(4), respectively, in agreement with experiment and predict the 8He point
proton rms radius to be 1.88(6) fm. At the same time, our calculations show that the recently devel-
oped nonlocal INOY NN potential gives binding energies closer to experiment, but underestimates
the charge radii.

PACS numbers: 21.60.Cs, 21.30.Fe, 24.10.Cn, 27.20.+n

Recent advances in the theory of the atomic struc-
ture of helium [1] as well as in the techniques of isotopic
shift measurement made it possible to determine accu-
rately the charge radius of 6He [2]. Precision laser spec-
troscopy on individual 6He atoms confined and cooled in
a magneto-optical trap was performed and measured the
isotope shift bewteen 6He and 4He. With the help of
precise quantum mechanical calculations with relativis-
tic and QED corrections [3] and from the knowledge of
the charge radius of 4He (1.673(1) [4]), it was possible to
detemine the charge radius of 6He to be 2.054±0.014 fm
[2]. The large difference between the 4He and 6He charge
radii is due to the extra two loosly bound neutrons in 6He
that form a halo [5]. A similar experiment to determine
the charge radius of 8He is under way [6].

It is a challenge for ab initio many-body methods to
calculate the nuclear radii with an accuracy comparable
to current experimental accuracy and test in this way
the nuclear Hamiltonians used as the input of ab ini-

tio calculations. At present, there are two ab initio ap-
proaches capable of describing simultaneously the 4He,
6He and 8He isotopes starting from realistic inter-nucleon
interactions. One is the Green’s function Monte Carlo
(GFMC) method [7] and the other is the ab initio no-core
shell model (NCSM) [8]. In this paper, we calculate the
ground-state properties of 4He, 6He and 8He within the
NCSM. We test two vastly different accurate nucleon-
nucleon (NN) potentials, the CD-Bonn [9] and the the
INOY (Inside Nonlocal Outside Yukawa) [10, 11].

In the NCSM, we consider a system of A point-like
non-relativistic nucleons that interact by realistic two- or
two- plus three-nucleon interactions. The calculations are
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performed using a finite harmonic oscillator (HO) basis.
As in the present application we aim at describing loosely
bound states, it is desirable to include as many terms as
possible in the expansion of the total wave function. By
restricting our study to two-nucleon (NN) interactions,
even though the NCSM allows for the inclusion of three-
body forces [12], we are able to maximize the model space
and to better observe the convergence of our results. The
NCSM theory was outlined in many papers. Here we only
repeat the main points.

We start from the intrinsic two-body Hamiltonian for
the A-nucleon system HA = Trel + V , where Trel is the
relative kinetic energy and V is the sum of two-body
nuclear and Coulomb interactions. Since we solve the
many-body problem in a finite HO basis space, it is nec-
essary that we derive a model-space dependent effective
Hamiltonian. For this purpose, we perform a unitary
transformation [8, 13–15] of the Hamiltonian, which ac-
commodates the short-range correlations. In general, the
transformed Hamiltonian is an A-body operator. Our
simplest, yet non-trivial, approximation that we employ
in this work is to develop a two-particle cluster effec-
tive Hamiltonian, while the next improvement is to in-
clude three-particle clusters, and so on. The effective
interaction is then obtained from the decoupling condi-
tion between the model space and the excluded space
for the two-nucleon transformed Hamiltonian. The re-
sulting two-body effective Hamiltonian depends on the
nucleon number A, the HO frequency Ω, and Nmax, the
maximum many-body HO excitation energy defining the
model space. It follows that the effective interaction,
which is translationally invariant, approaches the start-
ing bare interaction for Nmax → ∞. Consequently, by
constraction the method is convergent to the exact solu-
tion. At the same time, the NCSM effective interaction
method is not variational as higher-order terms may con-
tribute with either sign to total binding.
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Once the effective interaction is derived, we diagonal-
ize the effective Hamiltonian in a Slater determinant (SD)
HO basis that spans a complete Nmax~Ω space. We have
reached model spaces of Nmax = 22, 16 and 12 for 4He,
6He and 8He, respectively. This is a highly non-trivial
problem. The dimensions are large, e.g. 7× 108 for 6He,
although still smaller than in standard shell model cal-
culations, e.g. the dimension is 109 for 56Ni in full fp-
shell. The first difficulty is due to the large number of
shells. In the Nmax = 22 model space, there are 276
nlj-shells corresponding to 4600 nljm individual states.
This can be compared 4 and 20, respectrively for 56Ni
in full fp-shell. This means that one has to handle a
huge number of operators. Therefore, it has been nec-
essary to write a specialized version of the shell model
code Antoine [16, 17], suitable for the NCSM applica-
tions, see, e.g., Refs. [18, 19]. The code works in the
M scheme for basis states, and uses the Lanczos algo-
rithm for diagonalization. Its basic idea is to write the
basis states as a product of two Slater determinants, a
proton one and a neutron one. Matrix elements of opera-
tors are calculated for each separate subspace (one-body
for the proton-neutron, two-body for the proton-proton
and neutron-neutron). The performance of the code is
the best when the ratio between the number of proton
plus neutron SD and the dimension of the matrix is the
least. It happens when the number of proton SD is equal
the number of the neutron SD. To highlight the differ-
ences between the standard and the NCSM calculations,
we note that for example, in 56Ni there are 125970 neu-
tron SD, while in 6He and 8He there are 19.5 × 106 and
43× 106 neutron SD, respectively. Further, for example,
in the basis of 48Ca the 12022 neutron SD with M = 0
produce 144528484 states in the full basis. In 8He, the
8986408 neutron SD with M = 0 produce only 56216057
states in the full basis and 7007190 of these SD that have
N = 12 are associated with a unique N = 0 proton SD.
Another comment concerning the difficulty of performing
the NCSM calculations is that the matrices become less
sparse when the number of particles decrease. To keep
the comparison with the standard shell model, in 4He
we have a dimension 12.5 smaller than in 56Ni but 1.5
times more non-zero matrix elements. For all these rea-
sons, NCSM calculations with large Nmax model spaces
are difficult but still feasible with a computer with a large
RAM memory and a large disk capacity. As a last exam-
ple, one Lanczos iteration in 6He takes 7 hours while the
same in 56Ni takes 70 minutes on an Opteron machine.

As already mentioned, we test two different, high-
precision NN interactions in this study: the CD-Bonn
2000 [9] and the INOY [10, 11] potentials.

The CD-Bonn 2000 potential [9] as well as its earlier
version [20] is a charge-dependent NN interaction based
on one-boson exchange. It is described in terms of co-
variant Feynman amplitudes, which are non-local. Con-
sequently, the off-shell behavior of the CD-Bonn inter-
action differs from local potentials which leads to larger
binding energies in nuclear few-body systems.

TABLE I: Point-proton (rp) and point-neutron (rn) rms radii
and binding energies (EB) of 4,6,8He isotopes. The calculated
values were obtained within the ab initio NCSM. The exper-
imental values are from Refs. [2, 4, 5, 22–25].

rp [fm] Expt. CD-Bonn 2000 INOY
4He 1.455(1) 1.45(1) 1.37(1)
6He 1.912(18) 1.89(4) 1.76(3)
8He 1.88(6) 1.74(6)

rn [fm] Expt. CD-Bonn 2000 INOY
6He 2.59-2.85 2.67(5) 2.55(10)
8He 2.69(4) 2.80(10) 2.60(10)

EB [MeV] Expt. CD-Bonn 2000 INOY
4He 28.296 26.16(6) 29.10(5)
6He 29.269 26.9(3) 29.38(10)
8He 31.408(7) 26.0(4) 30.30(30)

A new type of interaction, which respects the local
behavior of traditional NN interactions at longer ranges
but exhibits a non-locality at shorter distances, was re-
cently proposed by Doleschall et al [10, 11]. The au-
thors explore the extent to which effects of multi-nucleon
forces can be absorbed by non-local terms in the NN
interaction. They investigated if it is possible to intro-
duce non-locality in the NN interaction so that it cor-
rectly describes the three-nucleon bound states, while
still reproducing NN scattering data with high precision.
The so called IS version of this interaction, introduced in
Ref. [10], contains short-range non-local potentials in 1S0

and 3S1−
3D1 partial waves while higher partial waves are

taken from Argonne v18. In this study we are using the
IS-M version, which includes non-local potentials also in
the P and D waves [11]. We note that, for this particu-
lar version, the on-shell properties of the triplet P -wave
interactions have been modified in order to improve the
description of 3N analyzing powers. Unfortunately, this
gives a slightly worse fit to the Nijmegen 3P phase shifts.

We performed 4He calculations both in the Slater de-
terminant basis using the Antoine code and model spaces
up to Nmax = 22 within the two-body effective interac-
tion approximation and the Jacobi-coordinate HO ba-
sis using the Manyeff code [13] with model spaces up
to Nmax = 20 within either the two-body effective in-
teraction approximation or the three-body effective in-
teraction approximation. The ground-state energy con-
vergence is good for both NN potentials. For the CD-
Bonn 2000, this can be seen in Fig. 1 of Ref. [21]. Our
4He binding energy and point-proton root-mean-square
(rms) radii results are summarized in Table I. We note
that the point-proton rms radius is related to the proton
charge rms radius as [2] 〈r2

p〉 = 〈r2
c 〉− 〈R2

p〉− 〈R2
n〉(N/Z),

with (〈R2
p〉)

1/2 = 0.895(18) fm [26], the charge radius of

the proton and 〈R2

n〉 = −0.120(5) fm2 [27], the mean-
square-charge radius of the neutron. We observe that
the CD-Bonn 2000 underbinds 4He by about 2 MeV,
but describes the point-proton rms radius in agreement
with experiment. The INOY NN potential, on the other
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FIG. 1: The 6He ground-state energy dependence on the HO
frequency for different model-spaces sizes from Nmax = 0 to
Nmax = 16 obtained using the CD-Bonn 2000 NN potential.
The inset demonstrates how the values at the minima of each
curve converge with increasing Nmax.

hand, overbinds 4He by 800 keV and underestimates the
point-proton rms radius. We note that our INOY 4He
results are in perfect agreement with those obtained by
the Faddeev-Yakubovski calculations of Ref. [28].

Our calculations for 6He and 8He nuclei were per-
formed in model spaces up to Nmax = 16 and Nmax = 12,
respectively, for a wide range of HO frequencies.
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FIG. 2: The 6He ground-state energy dependence on the
model space size for different HO frequencies from ~Ω = 11
MeV to ~Ω = 16 MeV obtained using the INOY NN potential.

The 6He ground-state energy dependence on the HO
frequency for different model spaces is shown in Fig. 1
for the CD-Bonn 2000. In Fig. 2, we show the 6He
ground-state energy dependence on the model-space size
for different HO frequencies obtained using the INOY
NN potential. We observe a quite different convergence
trend for the two potentials. For the INOY, the con-
vergence is very uniform with respect to the HO fre-
quency with systematic changes with Nmax. The con-
vergence with increasing Nmax is evident. We extrapo-
late, e.g. asuming an exponential dependence on Nmax

as E(Nmax) = E∞ + a exp(−bNmax), that the converged
INOY ground-state energy will slightly overbind 6He.
The ground-state energy convergence for the CD-Bonn
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FIG. 3: The same as in Fig. 1, but for 8He and model-spaces
from Nmax = 0 to Nmax = 12.

2000 is quite different with a stronger dependence on
the frequency, with minima shifting to lower frequency
with basis size increase, and an overall weaker depen-
dence on Nmax as seen in the inset of Fig. 1. Contrary to
the INOY, the CD-Bonn underbinds 6He by more than
2 MeV, which is typical for the standard high-precision
NN potentials [7].
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FIG. 4: The same as in Fig. 2, but for 8He and HO frequencies
from ~Ω = 12 MeV to ~Ω = 17 MeV.

The same ground-state energy dependencies for 8He
are shown in Figs. 3 and 4. Here, the INOY extrapolation
is more difficult as, due to the complexity of the calcula-
tions, we are limited to model spaces up to Nmax = 12.
Our binding energy results are summarized in Table I.
The CD-Bonn 2000 and the INOY NN potentials under-
bind 8He by about 5 MeV and 1 MeV, respectively. Our
calculation suggest that the CD-Bonn 2000 predicts 6He
bound but 8He unbound. The INOY predicts both 6He
and 8He bound. The isospin dependence of the bind-
ing energies is wrong for the CD-Bonn. A very similar
situation was found for the Argonne NN potentials in
Ref. [7]. Those NN potentials, at the same time, pre-
dict also the 6He unbound [7]. The CD-Bonn NN po-
tential must be augmented by three-nucleon interaction
to achieve a correct description of binding energies. The
INOY NN potential improves on the isospin dependence
of binding energies. As this potential absorbs some three-
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FIG. 5: The 6He point-proton rms radius dependence on the
model space size for different HO frequencies from ~Ω = 8
MeV to ~Ω = 14 MeV obtained using the CD-Bonn 2000 NN
potential. The experimental value is from Ref. [2].

nucleon effects in its nonlocal part, it supports the expec-
tation that a three-nucleon interaction should improve
the isospin dependence of binding energies. At the same
time, a three-nucleon interaction can hardly be added to
the INOY NN potential as it was already fine-tuned to
reproduce A = 3 binding energies. Therefore, it is diffi-
cult to see, how to correct its still not quite right binding
energy predictions for the He isotopes.
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FIG. 6: The 6He point-neutron rms radius dependence on the
model space size for different HO frequencies from ~Ω = 8
MeV to ~Ω = 14 MeV obtained using the CD-Bonn 2000 NN
potential.

Our point-nucleon rms results are presented in Figs. 5-
9 and summarized in Table I. In the figures, we show the
model-space size dependence of the rms radii for different
HO frequencies. A general feature is a decrease of the HO
frequency dependence with increasing model-space size
defined by Nmax. In all cases, the rms radii exhibit con-
vergence. The 6He point-proton rms radius experimental
value is shown as a dashed line in Figs. 5 and 7 with the
dotted lines indicating the experimental error. The CD-
Bonn 2000 6He point-proton rms radius, Fig. 5, stabilizes
at Nmax = 16 for the HO frequencies of ~Ω = 9 and 10
MeV, while it is still decreasing for ~Ω = 8 MeV and it
is increasing for the HO frequencies higher than ~Ω = 10
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FIG. 7: The same as in Fig. 5, but for the INOY NN potential
and HO frequencies from ~Ω = 11 MeV to ~Ω = 16 MeV.
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FIG. 8: The 8He point-proton rms radius dependence on the
model space size for different HO frequencies from ~Ω = 10
MeV to ~Ω = 15 MeV obtained using the CD-Bonn 2000 NN
potential.

MeV. Clearly, the stable result is very close to the exper-
imental value. We estimate the error of our calculation
at Nmax = 16 from the HO frequency dependence. We
note that we published the 6He CD-Bonn point-proton
rms radii in Ref. [29]. Those results were obtained using
the HO frequency of ~Ω = 13 MeV in Nmax = 6, 8 and 10
model spaces. Our Nmax = 10 value, 1.763 fm, was then
compared to experiment in Ref. [2]. We can see from
Fig. 5 that the radius is still increasing with Nmax for
that frequency and reaches, e.g. 1.819 fm at Nmax = 16.
From our present results obtained up to Nmax = 16 for a
wide range of HO frequencies we arrive at the CD-Bonn
2000 point-proton rms radius of 1.89(4) fm that, taken
into account the error bars, agrees with the experimen-
tal value of 1.912(18) fm. The point-neutron rms radius
shows a stronger dependence on the HO frequency and
a slower convergence as seen in Fig. 6. This is to be ex-
pected as the neutron halo is extended and a large HO
basis is needed to descibe it properly. Nevertheless, we
observe a reasonable stability of the neutron rms radius
at lower HO frequencies that allows us to estimate its
CD-Bonn 2000 value to be 2.67(5) fm.

We observe a better convergence for the INOY NN
potential not only for the binding energies but also for the
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FIG. 9: The same as in Fig. 8, but for the INOY NN potential
and HO frequencies from ~Ω = 12 MeV to ~Ω = 17 MeV.

radii. This is aparent from Fig. 7. For this NN potential,
we find the 6He point-proton rms radius to be 1.76(3) fm.
This is significantly less than in experiment. Clearly, the
INOY NN potential underpredicts both the 4He and 6He
point-proton rms radii.

Our 8He point-proton rms radius results are shown in
Figs. 8 and 9 for the CD-Bonn 2000 and INOY poten-
tials, respectively. Based on the basis size and the HO
frequency dependence, we predict the 8He point-proton
rms radius to be 1.88(6) fm based on our CD-Bonn re-
sults. The INOY NN potential gives a smaller value,
1.74(6) fm, consistently with the smaller 4He and 6He
results. In both cases, the 8He point-proton radius is

slightly smaller then the corresponding one in 6He. Tak-
ing into account the uncertainties, however, the differen-
cies are insignificant.

In conclusion, we performed large-scale ab initio

NCSM calculations for 4He, 6He and 8He isotopes. We
used the high-precision CD-Bonn 2000 and the INOY NN
potentials and obtained results for binding energies and
point-nucleon rms radii. Using the CD-Bonn 2000, we
obtained the point-proton rms radii of 4He and 6He in
agreement with experiment and predict the 8He point-
proton rms radius to be 1.88(6) fm. The INOY NN
potential, on the other hand, underestimates both 4He
and 6He experimental point-proton rms radii. The CD-
Bonn 2000 underbinds the He isotopes as is typical for
the standard high-precision NN interactions. It must be
augmented by a three-nucleon interaction. It is conceiv-
able that this can be done in a way that will not change
the charge radii. The INOY NN potential gives binding
energies closer to experiment. However, it is not obvious,
how the charge radii results can be brought to agreement
with experiment when using this potential. It can hardly
be augmented by a three-nucleon interaction as it was
already fine-tuned to describe the A = 3 system.
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